Tech Tip
HARMONIC DISTORTION
Any device with nonlinear operating characteristics can produce harmonics in your power system. If you are currently using equipment that can cause harmonics or have experienced harmonic related problems, capacitor reactor or filter bank equipment may be the solution.
Harmonic distortion and related problems in electrical power systems
are
becoming more and more prevalent in electrical distribution systems.
 Excessive heating and failure of capacitors, capacitor fuses, transformers, motors, fluorescent lighting ballasts, etc.
 Nuisance tripping of circuit breaker or blown fuses
 Presence of the third harmonic & multiples of the 3rd harmonic in neutral grounding systems may require the derating of neutral conductors
 Noise from harmonics that lead to erroneous operation of control system components
 Damage to sensitive electronic equipment
 Electronic communications interference
The following is a discussion of harmonics; the characteristics of the problem; and a discussion of our solution.
The ever increasing demand of industry and commerce for stability, adjustability and accuracy of control in electrical equipment led to the development of relatively low cost power diodes, thyristors, SCRs and other power semiconductors. Now used widely in rectifier circuits for U.P.S. systems, static converters and A.C. & D.C. motor control, these modern devices replace the mercury arc rectifiers of earlier years and create new and challenging conditions for the power engineer of today.
Although solid state devices, such as the thyristor, have brought significant improvements in control designs and efficiency, they have the disadvantage of producing harmonic currents.
Harmonic currents can cause a disturbance on the supply network and adversely affect the operation of other electrical equipment including power factor correction capacitors.
We are concentrating our discussions on harmonic current sources associated with solid state power electronics but there are actually many other sources of harmonic currents. These sources can be grouped into three main areas:
 Power electronic equipment: Variable speed drives (AC VFDÕs, DC drives, PWM drives, etc.); UPS systems, rectifiers, switch mode power supplies, static converters, thyristor systems, diode bridges, SCR controlled induction furnaces and SCR controlled systems.
 Arcing equipment: Arc furnaces, welders, lighting (mercury vapor, fluorescent)
 Saturable devices: Transformers, motors, generators, etc. The harmonic amplitudes on these devices are usually insignificant compared to power electronic and arcing equipment, unless saturation occurs.
Harmonics are sinusoidal waves that are integral multiples of the fundamental 60 Hz waveform (i.e., 1st harmonic = 60 Hz; 5th harmonic = 300 Hz). All complex waveforms can be resolved into a series of sinusoidal waves of various frequencies, therefore any complex waveform is the sum of a number of odd or even harmonics of lesser or greater value. Harmonics are continuous (steadystate) disturbances or distortions on the electrical network and are a completely different subject or problem from line spikes, surges, sags, impulses, etc., which are categorized as transient disturbances.
Transient problems are usually solved by installing suppression or isolation devices such as surge capacitors, isolation transformers or M.O.V.s. These devices will help solve the transient problems but will not affect the mitigation of low order harmonics or solve harmonic resonance problems.
Thyristor and SCR converters are usually referred to by the number of DC current pulses they produce each cycle. The most commonly used are 6 pulse and 12 pulse.


There are many factors that can influence the harmonic content but typical harmonic currents, shown as a percentage of the fundamental current, are given in the above table. Other harmonics will always be present, to some degree, but for practical reasons they have been ignored. 
The impedance of a circuit dictates the current flow in that circuit.
As the supply impedance is generally considered to be inductive, the network impedance increases with frequency while the impedance of a capacitor decreases. This causes a greater proportion of the currents circulating at frequencies above the fundamental supply frequency to be absorbed by the capacitor, and all equipment associated with the capacitor.
In certain circumstances, harmonic currents can exceed the value of the fundamental (60 Hz) capacitor current. These harmonic problems can also cause an increased voltage across the dielectric of the capacitor which could exceed the maximum voltage rating of the capacitor, resulting in premature capacitor failure.
The circuit or selective resonant frequency is reached when the capacitor reactance and the supply reactance are equal.
Whenever power factor correction capacitors are applied to a distribution network, which combines capacitance and inductance, there will always be a frequency at which the capacitors are in parallel resonance with the supply.
The addition of a reactor in the capacitor circuit increases the fundamental voltage across the capacitor. Therefore, care should be taken when adding reactors to existing capacitors.
Harmonic currents can be significantly reduced in an electrical system by using a harmonic filter.
In its basic form, a filter consists of a capacitor connected in series with a reactor tuned to a specific harmonic frequency. In theory, the impedance of the filter is zero at the tuning frequency; therefore, the harmonic current is absorbed by the filter. This, together with the natural resistance of the circuit, means that only a small level of harmonic current will flow in the network.
The effectiveness of any filter design depends on the reactive output of the filter, tuning accuracy and the impedance of the network at the point of connection.
Experience is extremely important in the design of such filters to ensure:
a.) the most efficient and cost effective solution is selected;
b.) no adverse interaction between the system and the filter.Avoiding Resonance
Whenever load expansion is considered, the network is likely to change and existing filter equipment should be evaluated in conjunction with the new load condition. It is not recommended to have two or more filters tuned to the same frequency connected on the same distribution system. Slight tuning differences may cause one filter to take a much larger share of the harmonic distortion. Or, it may cause amplification of the harmonic order which the equipment has been designed to reduce. When there is a need to vary the power factor correction component of a harmonic filter, careful consideration of all load parameters is necessary.
The first step in solving harmonic related problems is to perform an analysis to determine the specific needs of your electrical distribution system. To determine capacitor and filter requirements, it is necessary to establish the impedance of the supply network and the value of each harmonic current. Capacitor, reactor and filter bank equipment are then specified under very detailed and stringent computer analysis to meet your needs.
Asea Brown Boveri (ABB) is the world's largest manufacturer of dry type low voltage capacitors. ABB Control utilizes this experience in recommending three options to solve the problems associated with applying capacitors to systems having harmonic distortion:
 Apply the correct amount of capacitance (kvar) to the network to avoid resonance with the source. This may be difficult, especially in automatic systems as the capacitance is always changing. This solution usually means connecting less capacitance to the system than is actually needed for optimum power factor correction.
 Install reactors in series with capacitors to lower the resonance below critical order harmonics; i.e., 5th, 7th, 11th & 13th. This design tunes the resonant frequency of the system well below the 5th harmonic and is called a detuned filter bank. This solution allows the capacitors to operate in a harmonic environment.
 Filters are recommended if a problem exists with harmonic distortion before the application of power factor correction, or if the harmonic distortion is above the limits recommended in IEEE 519, Guide for Harmonic Control and Reactive Compensation of Static Power Converters. (The recommended limits for voltage distortion in IEEE 519 are presently 5% for general applications.) Tuned filters sized to reduce the harmonic distortion at critical frequencies have the benefits of correcting the power factor and improving the network power quality.
With our knowledge of harmonics, ABB Control provides a complete range of products from individual capacitors, fixed banks and automatic banks, to power filter systems. All these products utilize dry type low voltage ABB power factor correction capacitor elements which are selfhealing for internal faults.
To maintain stringent quality control standards, most control components found in ABB Control automatic, reactor and filter capacitor bank products are also ABB products. These products include contactors, circuit breakers, control relays, disconnect switches, power factor relays and pushbutton devices. ABB Capacitor Features & Services Every ABB Control low voltage capacitor product incorporates our unique dry type design. Therefore, environmental and personnel concerns associated with leakage or flammability of conventional oilfilled units are eliminated.
Other features include:
 Patented Sequential Protection System with dry, selfhealing design;
internally protected elements; and dry, nonflammable vermiculite filler  Individual units, fixed and automatic capacitor bank designs, 208600V
 Automatic and fixed tuned or detuned capacitor banks
 Onsite power factor and harmonic studies
 CSA approved
Copyright © 1996 ABB Control. Reprinted with Permission.